Posts Tagged ‘luteal phase’

Parturition means birthing (birth) and dystocia a difficult one

January 9, 2008

And what is a parturition alarm?

For these and other entries, see the Alphabet of bioZhena at

Parturition alarm:

This is a concept that has to do with the need to know when labor or delivery is beginning, because the birthing female may be in need of help.

At the time of writing the first Alphabet draft more than five years ago, an Internet search produced only one such technology, a pressure-sensing girth, suitable for the horse breeder only, because it utilizes the fact that the horse mare lies on her side only in the process of parturition. To illustrate, we borrow a nice picture from a more recent publication found in today’s search on parturition alarm, which search still shows a preponderance of equine innovations:

Equine birth alarm

In the originally noted publication, reference was made to some other method that would detect the emergence of the amniotic sac or of the foal from the vulva (vaginal orifice) but that was not a satisfactory solution. In the horse-breeding arena, about 5-6% of births require help. Various approaches to the birth alarm solution have been attempted.

These days, there are quite a few patents etc. found in the parturition alarm search. And even 5 years ago, a patent from New Mexico University should have been found because their intra-vaginal parturition alarm patent (basically for cows) was published in 1987.

In human obstetrics, where most births take place in hospitals, determining the right time of confinement would be very beneficial. bioZhena (and/or its sister company, bioPecus) will investigate our vaginal sensor technology – suitably modified – with a view to developing a parturition alarm applicable to any mammal.

Also relevant in this context is the implication of the Ovulona making available the menstrual cycle (folliculogenesis) data over many months or cycles before conception. This will enable a more accurate anticipation of the EDD, Expected Date of Delivery. You will understand this better below, under Parturition. I highly recommend that you check out Figuring Your Due Date, too – from the Midwife Archives.

Let us put it this way: Since this is the bioZhena blog (and not bioPecus, for veterinary tools), the EDD issue must be addressed first, before any parturition alarm developments. Because we are primarily concerned with the Rerum Naturare Feminina.

And it would still be of great interest to hear from an expert Latinist about the correct way of saying this in plural, the Natural Thing of Women, the Women’s Natural Thing…

This being a reference to /2007/12/16/cervix-uteri-and-seven-or-eight-related-things/ .


The process of giving birth; childbirth. [From Late Latin parturitio, from Latin parturitus, past participle of parturire, to be in labor.]

Parturition is illustrated at .

The illustration’s legend indicates that physicians usually calculate the gestation period (length of the pregnancy) as 280 days: 40 weeks or 10 lunar months from the last menstrual period (LMP) to the date of confinement, which is the estimated date of delivery of the infant [EDD].

Indubitably, due dates are a little-understood concept:

“Truth is, even if you know the exact date when you ovulated, you still can only estimate the baby’s unique gestational cycle to about plus or minus two weeks” [ ]. Why should that be? Because of the variability of your menstrual cycle lengths? (They vary even if you do not think so).

Statistically, the gestation time for human babies has a mean of 278 days and a standard deviation of 12 days, an uncomfortably large spread. The old Naegele Rule of a 40-week pregnancy was invented by a Bible-inspired botanist Harmanni Boerhaave in 1744 and later promoted by Franz Naegele in 1812. It is still believed to work fairly well as a rule of thumb for many pregnancies. However, the rule of thumb also suggests: “If your menstrual cycles are about 28 days, quite regular, and this is not your first child, your physician’s dating is probably fine. If your cycles are longer or irregular, or if this is your first child, the due date your physician has given you may be off, setting you up for all kinds of problems” (induction, interventions, C-section among them).

This is where the bioZhena technology can be expected to provide help, making it possible to reckon the EDD with recorded menstrual cycle (folliculogenesis history) data rather than merely with the LMP + 280 days. This, once properly researched, may be expected to have a significant impact on obstetric management. — Any comments?

It is ironic that, in this age of technological medicine, American women worry about their birthing process not being allowed to take its own natural course on account of an ancient method of predicting the EDD.

Ironically, the 40 week dogma – which is the gestational counterpart of the unacceptable calendar method of birth control (the so-called “Vatican roulette”) – does not reconcile the 295+ days of the 10 lunar months; and yet, at the same time, the U.S. has an unusually high perinatal death rate, resulting from high statistics of too early (preterm) labor. Quid agitur? See also under Gestation.

Dystocia or birthing difficulty:

Dystocia is difficult delivery, difficult parturition. From Latin dys-, bad, from Greek dus-, ill, hard + Greek tokos, delivery. Calf losses at birth result in a major reduction in the net calf crop. Data show that 60% of these losses are due to dystocia (defined as delayed and difficult birth) and at least 50% of these calf deaths could be prevented by timely obstetrical assistance. The USDA web site is apparently no longer there but when it was it indicated that an electronic calving monitor was being developed to determine maternal and fetal stress during calving. These studies are important since they are leading the way for developing methods to reduce the $800 million calf and cow loss that occurs each year at calving in the USA’s beef herds.

In analogy with the superiority of in vivo monitoring of folliculogenesis versus tracking behavioral estrus (heat), in vivo monitoring of the progress towards parturition must be a priori a more promising approach.

The telemetric version of the BioMeter – the animal version of the Ovulona technology – will hopefully provide a tool for these efforts. Once tested on animals, human use will be a logical extension of the endeavor. (Or endeavour, should it take place in Europe! Smiley…)

Comment about the EDD and/or EDC issue, and request for input:

Again, EDD stands for Estimated Day of Delivery, while EDC stands for Estimated Day of Confinement.

Per Encyclopedia of Childhood and Adolescence, article Gestation Period and Gestational Age [ ], ” a gestation period of thirty-eight weeks (266 days) is calculated for women who are pregnant by a procedure such as in vitro fertilization or artificial insemination that allows them to know their exact date of conception.”

The Ovulona device from bioZhena will provide to the woman user a very simple means to record the day of any intercourse. In every cycle, whether pregnancy is planned or not. This must become a part of the routine. The information will be electronically recorded along with the daily or almost-daily measurement data inherent in the use of the Ovulona. With that menstrual cycling history data, this intercourse-timing information will be available for optional use by the woman’s physician(s).

Therefore, the routine use of the Ovulona will provide for an equivalent of the above-referenced 38-week (266 days) calculation available to the women receiving IVF or artificial insemination.

This alone should be an improvement on the current way of EDD/EDC assessment.

In addition, an investigation should be undertaken into the question of whether any inference can be drawn from the woman’s menstrual cycle history prior to the conceptive intercourse. Any comments on this would be welcome, even about anecdotal or subjective or tentative observations that may be available already. However non-scientific, however tentative, however uncertain an individual answer or input from you may be…

E.g., do women with more or less regular cycles tend to exhibit a regular gestation period, and vice versa?

And, certainly, what evidence is available in medical literature (or maybe in unpublished records?) about the outcomes of the IVF and/or artificial insemination pregnancies, i.e., about their documented gestation periods? Does the 38 weeks projection work? Always? If not always, can anything be correlated with any deviation?

Do women with distinctly irregular menstrual cycles tend to have non-regular gestation periods?

The complicating effect of first versus subsequent pregnancy has already been noted, of course…

Conceivably, there is no such preliminary info available, and we shall have to try and gather even these preliminary data in a systematic manner, but – no question asked, nothing learned… Public or private input would be appreciated.


Birthday, and how it relates to the bioZhena enterprise – eukairosic™ diagnostic tools

December 28, 2007

Today is a major anniversary related to the bioZhena enterprise. Namely, a round-number (and not small) birthday of the offspring whose begetting had much, if not everything, to do with the inception of the project.

The biologically educated member of the would-be parental team insisted that medical help would have to be the very last resort, as she did not wish to be poked in and subjected to the various medical procedures available in the country of the proud Albion (that, alas, no longer ruled the waves!), where this awakening was going on. The image of what she resented getting into is telling, and it’s not even the whole story.

Woman in stirups sketch

Awakening on the part of said couple, who till then took steps to minimize or theoretically avoid getting in the family way, owing to circumstances. As in too many instances the world over, the “awakening” was left until somewhat too late. I do not wish to talk about age specifics, but you probably know that particularly female fertility (more accurately put, fecundity or fecundability) decreases starting around or even before the Christ’s age, and so – in retrospect – it was no great surprise to find that achieving pregnancy was not as simple as expected. At the time, actually, this was a great surprise…

At the time, yours truly was not an expert in the field that deals with certain practicalities of the most important aspect of life, by which many of us mean procreation, reproduction, and its management. I am referring to some insight into the practicalities on the female side of things procreative, which insight was not there at the time – but the better half knew the basic fundamental that I now delight in referencing as eukairosic.

In a nutshell, the word refers to the right time, opportune time – exactly what we are about the strategic or “right time; the opportune point of time at which something should be done.” A window of opportunity is kairos time.

For more about this, the Wikipedia article can be recommended, at . Let’s cite: Kairos (καιρός) is an ancient Greek word meaning the “right or opportune moment,” or “God’s time” [sic; thus said – but this should say “gods’ time”]. The ancient Greeks had many gods, and two words for time, chronos and kairos. While the former refers to chronological or sequential time, the latter signifies “a time in between”, a moment of undetermined period of time in which “something” special happens. What the special something is depends on who is using the word. END QUOTE.

If you visit that article, you will probably understand why I would like to look at the possibility of adopting as our company logo QUOTE a monochrome fresco by Mantegna at Palazzo Ducale in Mantua (about 1510 C.E.) that shows a female Kairos (most probably Occasio)… UNQUOTE.

You will also appreciate that, since we are not theologians, and because “eu-“ is the Greek prefix meaning well or good or true or easy, my choice of the adjective that we want to trademark as descriptive of bioZhena’s wares is eukairosic™.

And so here, for the sake of accurate definition, is one other item from The Alphabet of bioZhena – /2007/11/28/the-alphabet-of-biozhena/

Fecundability and fecundity:

Fecundability is the probability of achieving pregnancy within one menstrual cycle – about 20% or maybe 25% in normal couples [sic; the probability depends on many factors, including age – vide infra, or see below].

Fecundity is the ability to achieve a live birth.

Fecundability is strongly influenced by the age of the partners, and it is maximal at about age 24. There is a slight decline at ages 24 – 30, and a rapid decline after age 30.

The words are derived from Latin fecundus, fecund, from the root of fetus, via Old French fecond. Fecund means fruitful in children, or prolific.

As for the eukairosic diagnostic tools, their utility goes beyond reproductive management. Due to folliculogenesis (menstrual cycling), even things such as administration of medications or certain diagnostic examinations must be performed at the right time within the menstrual cycle…

Scire quod sciendum

fecundoscitus!!! 🙂

Thus spoke the exegete and father of Barnaby and Petrushka, Vaclav Kirsner © 2007

 ‘To know what is to be known’.

Stress and fertility

December 22, 2007

How stress affects the inherently narrow fertile window

Stress can do unwanted things to a woman and her menstrual cycle. In a nutshell, stress can make a woman completely infertile in this menstrual cycle (e.g., LPD, see below), or it can change the position of her fertile window (the time of ovulation included) within the menstrual cycle. Any of this can cause problems and lead to more stress…

The medical term is stress response, and it refers to the overall reaction of the organism to any adverse stimulus, whether it be of physical, mental or emotional kind, internal or external. The purpose is to adapt to challenge, and this goes on all the time. (C’est la vie! Real life is a never-ending series of stress responses.) Should the compensating reaction of the organism be inadequate or inappropriate, a pathological disorder may result.

The HPA axis, the immune system and the sympathetic nervous system are involved in the stress response. Don’t get stressed by some undecipherable abbreviations or unknown words — look up The Alphabet of bioZhena, you may find it or them in there!

Just remember, this is no Alphabet of Ben Sira!

( /2007/11/28/the-alphabet-of-biozhena/)

021r from The Book of Urizen

Stress and the menstrual cycle

It is a matter of conventional wisdom that perturbations in the external or internal environments – that is stress – can interfere with the normal course of the menstrual cycle. To further quote the expert, disturbances in the menstrual cycle occur in response to exercise and physical demands, stress and emotional demands, and diet and nutritional demands [citation below, ref. 17].

As Michel J. Ferin writes, with reference to the brain component of the female reproductive control system, “with minimal reduction in (GnRH) pulse frequency, small undetected defects in the follicular maturation process may occur, whereas with a higher degree of pulse inhibition the follicular phase may be prolonged, and luteal phase deficiency, anovulation, and amenorrhea may develop.”

A micro-glossary: The follicular maturation process is also called folliculogenesis. GnRH is a brain-produced hormone involved in folliculogenesis. A maturing follicle is a small, protective sac, gland, or cluster of cells in the ovary, in which an egg (ovum) develops towards ovulation, in order to have a chance to be fertilized. For visualization see is an ad hoc selection of a few abstracts from my files on psychoneuroimmunoendocrinology papers addressing ovulation, reproduction and folliculogenesis.

Stress and the Ovulona

Results obtained with our Ovulona prototypes lead to the conclusion that the technique appears to detect such phenomena as referred to by Dr. Ferin. This is not so much or merely the different rates of follicular maturation in different menstrual cycles, but more seriously the delayed ovulations in those cycles where it takes longer than 1 day to reach the ovulation marker trough (minimum), as observed in some non-baseline subjects’ cyclic profiles.

This is the detection of Ferin’s “minimal reduction in (GnRH) pulse frequency, small undetected defects in the follicular maturation process may occur”. Whereas, “with a higher degree of pulse inhibition the follicular phase may be prolonged, and luteal phase deficiency [LPD], anovulation, and amenorrhea may develop” – and, indeed, we have seen the LPD, the extended follicular phase and short luteal phase, and various other aberrations in the cyclic profiles of different women over the years.

bioZhena is basically involved with non-pathological stress responses through monitoring certain end-organ effects.

Abnormal cyclic patterns of the end-organ effects may serve as an early warning of pathological disorders. This remains to be systematically investigated. Anecdotal evidence in non-baseline cyclic profiles is compelling.

For a hint of this, refer to these 5 slides: Five slides selected for bioZhena weblog

The non-baseline cyclic profiles present certain quantitative deviations from baseline: e.g., their post-ovulation (luteal) phase can be not of the normal length of about 14 days (12 to 16). In such abnormal cycles with short luteal phases (<11 days), observed more often in older women, there is a lack of synchrony due to a luteal-phase mismatch between the ovarian steroids and the pituitary peptides [S.K. Smith et al., J. Reprod. Fert. 75:363, 1985].

Here is an example of a non-baseline cyclic profile of a woman with a short luteal phase (8 days); for comparison, the woman’s BBT profile in the same cycle is also shown:

Short luteal phase cyclic profile

A woman’s history of amenorrhea and/or of ovarian cysts is pertinent to the case of abnormally short luteal phase, but so is stress and its effect on the GnRH hormone generator in the hypothalamus of the brain, which affects the output of the pituitary peptides.

For example, it is known in a general way that norepinephrine and possibly epinephrine in the hypothalamus increase the GnRH pulse frequency. Conversely, the endogeneous opioid peptides, the enkephalins and beta-endorphin, reduce the frequency of the GnRH pulses. These interactions are particularly important at the time of the “mid-cycle” LH surge, affecting its timing and intensity [W.F. Ganong, Review of Medical Physiology, 17th edition, Appleton & Lange, 1995, Chapter 23].

The slow rate of descent of the Ovulona signal – seen in slides 1 and 2, above – from the short-term predictive peak to the ovulation marker trough (minimum) is a useful diagnostic feature that is indicative of an extended period of time required for the two “clocks” (the circhoral and the circamensual) to become synchronized as a precondition of ovulation.

Activation of the hypothalamus-pituitary-adrenal (HPA)-axis by physical, chemical, and psychological perturbations is known to result in elevated levels of serum corticosteroid hormones. Corticosteroids are the principal effectors in the stress response and are thought to be responsible for both adaptational and maladaptational response to perturbing situations. They have profound effects on mood and behavior, and affect neurochemical transmission and neuroendocrine control.

Stress double whammy

Cortisol, the predominant corticosteroid in primates, is often regarded as the “stress hormone” and consequently serves as a marker of stress. Cortisol can be measured in blood, urine, and saliva. For information about the adrenal gland and stress, go to .

We logically mentioned stress in the post on Sub-fertility (or Reduced Fertility), in the following reminder. The endocrinologist professor Brown may be quoted:

“Failing to conceive when wanted is stressful and therefore favours infertility. It should be remembered that, apart from a few conditions such as blocked fallopian tubes, absent sperm and continued anovulation, most couples will conceive eventually without help. However, the modern expectation is one of immediate results, and the main function of assisted reproduction techniques is therefore to shorten the waiting time for conception.”

To which we would add that bioZhena aims to offer a more affordable and safer alternative to the A.R.T. approach.

References as excerpted from our White Paper:

[17] Michel J. Ferin, “The menstrual cycle: An integrative view”, Chapter 6 in [2], pages 103 – 121.

[2] Eli Y. Adashi, John A. Rock, and Zev Rosenwaks, editors, “Reproductive Endocrinology, Surgery, and Technology”, Lippincott – Raven, 1996.

Terminology reminder:

Luteal phase is the phase after ovulation. Follicular phase is the phase before ovulation. Referencing the phases of the menstrual cycle. Amenorrhea = abnormal absence of menstrual bleeding. GnRH = gonadotropin releasing hormone. See The Alphabet of bioZhena at /2007/11/28/the-alphabet-of-biozhena/

%d bloggers like this: